
Building and Environment 208 (2022) 108583

Available online 19 November 2021
0360-1323/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Modelling mould growth in domestic environments using relative humidity 
and temperature 

Tamaryn Menneer a,b,*, Markus Mueller b,c, Richard A. Sharpe d,e, Stuart Townley b,c 

a European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, UK 
b Environment and Sustainability Institute, Penryn Campus, University of Exeter, UK 
c College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK 
d University of Exeter Medical School, University of Exeter, UK 
e Wellbeing & Public Health, Cornwall Council, UK   

A R T I C L E  I N F O   

Keywords: 
Mould prediction 
Respiratory health 
Relative humidity 
Sensor data 
Indoor environments 

A B S T R A C T   

Damp and high levels of relative humidity (RH), typically above 70–80%, are known to provide mould- 
favourable conditions. Exposure to indoor mould contamination has been associated with an increased risk of 
developing and/or exacerbating a range of allergic and non-allergic diseases. The VTT model is a mathematical 
model of indoor mould growth that was developed based on surface readings of RH and temperature on wood in 
a controlled laboratory chamber. The model provides a mould index based on the environmental readings. We 
test the generalisability of this laboratory-based model to less-controlled domestic environments across different 
values of model parameters. Mould indices were generated using objective measurements of RH and temperature 
in the air, taken from sensors in a domestic setting every 3–5 min over 1 year in the living room and bedroom 
across 219 homes. Mould indices were assessed against self-reports from occupants regarding the presence of 
visible mould growth and mouldy odour in the home. Logistic regression provided evidence for relationships 
between mould indices and occupant responses. Mould indices were most successful at predicting occupant 
responses when the model parameters encouraged higher vulnerability to mould growth compared with the 
original VTT model. A lower critical RH level, above which mould grows, a higher sensitivity, and larger in-
creases in the mould index all consistently increased performance. Using moment-to-moment time-series data for 
temperature and RH, the model and its developments could help inform smart monitoring or control of RH, for 
example to counter risks associated with reduced ventilation in energy efficient homes.   

1. Introduction 

Eighty million people in Europe live in dwellings with indoor mould 
contamination [1], with 15% of homes in the UK affected [2]. In the UK, 
around 31% of home have been found to have humidity problems (48% 
of whom do not use air conditioning, fans or dehumidifier) [3,4], which 
increases the risk of condensation. Furthermore, 23% of UK homes have 
been found to have visible mould and 13% had a mouldy odour [3]. 

Mould spores are ubiquitous in outdoor environments [5–7]. Out-
door concentrations of mould spores vary seasonally and can influence 
the indoor environment [8]. The presence of indoor dampness (caused 
by water ingress, rising damp and condensation) can lead to increased 
mould contamination [9]. The extent of indoor dampness and resultant 
mould contamination increases in homes that are suffering fuel poverty 

[10]. Housing interventions to alleviate risk of fuel poverty (energy ef-
ficiency measures) can also suffer from condensation and mould 
contamination, unless there is adequate ventilation and heating [11,12]. 

All of these influences are important to consider because the pres-
ence of mould or a mouldy odour has an adverse effect on health for a 
wide range of conditions [13,14], including the development and/or 
exacerbation of a range of allergic and non-allergenic diseases [1, 
15–21]. The resultant impact on health depends on the timing and 
extent of exposure to a range of physical, chemical and biological agents 
[9,22] and the variable risk of allergic diseases throughout the life 
course [23]. 

Mould growth, including its impact on health, is further modified by 
a complex interaction between diverse built environment and resident 
characteristics. These include interactions between built age, build type, 
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architectural design, building materials, geographic location and resi-
dent behaviours such as variable heating, ventilation and maintenance 
patterns [9]. 

Mould growth is dependent on the material and species [7,24–27], 
modified by duration of exposure to humidity [28], and some species 
can survive in very dry environments [29]. However, the optimum 
fungal growth conditions require high levels of relative humidity (RH), 
typically above 70–80%. Consequently, mould prediction models are 
influenced by a range of factors such as fungal diffusion, fungal pro-
duction and available nutrients [30]. However, to our knowledge, all 
models incorporate levels of RH and temperature. 

The VTT model of mould growth is a deterministic dynamic math-
ematical model that predicts mould growth from surface RH and tem-
perature [31,32]. The model is reported to be one of the most used (e.g., 
Refs. [33–35]). For example, it has been used to test different methods of 
insulation in a heritage building [36] and to show no increased risk of 
mould growth in a house designed to have low energy usage [37]. 

Other commonly used models of mould growth, based on RH and 
temperature, include the use of isopleth curves, which separate 
favourable and unfavourable RH and temperature steady-state condi-
tions for mould growth [33,38,39]. Isopleth systems are often used in 
conjunction with different mould types and building materials to pro-
vide biohygrothermal models, which can also account for fluctuation in 
the conditions over time by taking into account effect of current con-
ditions on mould spores [5,40–43]. They have, for example, been 
applied to the study of mould growth on different building facades [44]. 

Comparisons of such models with the VTT model show some dif-
ferences in mould growth predictions, in part due to different behav-
iours under the same starting conditions, and under conditions that 
fluctuate or are unfavourable for mould growth, but there is also a strong 
positive relationship between the outputs for the two types of models 
[42,45,46]. Specifically, the VTT model allows a decline in the mould 
level under unfavourable conditions, has a smaller growth rate when 
there is a low mould level, includes a maximum mould level, and to 
some extent takes into account duration of mould-favourable conditions 
[46–48]. More generally, differences between mould growth models are 
attributable to the complexity of the mould germination and growth 
processes combined with the assumptions and simplifications in each 
type of model [33]. These studies and others [e.g., 35] suggest that 
unreliability under fluctuating conditions is due to limited experimental 
data when conditions are unfavourable for mould growth, and that more 
measurement research is required. 

Models of mould are generally based on specific surface conditions, 
such as RH, temperature and material, because mould growth depends 
on these conditions at the location of the growth. These surface condi-
tions can be affected by building construction, thermal conductance, 
temperature differences across the surface, heating and ventilation 
levels, and occupant behaviours [9,43]. The surface conditions used to 
develop and define models need to be specified within a certain set of 
parameters and ranges of values. However, these settings may not al-
ways capture the range of conditions found in a less controlled domestic 
setting, with noise introduced by influences of occupant behaviour, 
external conditions and building type. 

The purpose of the current study was to test whether RH and tem-
perature under these changeable domestic environments can be used to 
predict observed mould presence. The ambient measurements we use 
were taken from indoor sensors to capture the influences of build type, 
external conditions and occupant behaviours on RH and temperature. If 
the model is successful in predicting mould presence in the home, it 
would provide a basis for application to domestic monitoring in real- 
time, to allow interactive control of the current ambient conditions. 

Being the first study to model ambient conditions, we focus on one 
model in order to test the feasibility of generalisation to air measure-
ments. We chose to use the VTT model of mould growth because it is 
suitable for time-series RH and temperature input data. It captures the 
influence of historical conditions on the current mould level prediction. 

It also has flexibility in the rate of change for different mould levels and 
different durations of unfavourable growth conditions, as well as 
allowing for decline in growth. The previous work that has compared 
results from the VTT and other types of model, summarised earlier, 
showed broadly similar predictions [42,45,46]. It also provides a dy-
namic model that would allow the future development of real-time 
smart control of domestic air conditions. 

Air readings of RH have previously resulted in underestimates of the 
mould level from the VTT model, partly due to practical limits in 
obtaining an equilibrium between air and surface RH within the test 
chamber especially when conditions are fluctuating [33]. In a domestic 
setting, surface readings of RH that result in mould growth (model 
default of 80%) often arise from condensation or water intake [9]. Levels 
of 80% and above can be sustained on a surface by, for example the 
presence of standing water, although different types of surface material 
will retain varying levels of RH [30]. It seems less likely that such high 
moisture levels would be sustained in air in a domestic environment. 
Therefore, we speculate that the original VTT model is likely to be less 
sensitive to air RH than to the surface RH for which it was developed. 

We test the generalisability of the VTT model to heterogeneous time- 
series measurements from domestic ambient environments. Overall, we 
wished to identify parameter values for the mould model that provide 
the best performance in predicting observed mould in the home, by 
comparing performance across different sets of parameter values. 

This unique study utilises objective sensor data from one of the 
largest projects of its type. To our knowledge, the current study is the 
first to use time-series sensor measurements of domestic air temperature 
and RH across a large sample size and a long duration with an appli-
cation to mould contamination. Most previous studies examining indoor 
domestic temperature or humidity have a smaller sample size [49] or a 
shorter monitoring duration than the current study [50–52], or both 
[39]. We are aware of only one study of a similar size, which logged 
temperature, although not RH, every 20 min over one year in more than 
600 homes, to investigate factors associated with unhealthy tempera-
tures [53]. 

In the next section we present the details of the VTT model. Section 3 
provides the study background and describes the data. The methods, 
including model parameter values and analysis methods, are presented 
in Section 4. Section presents the results and evaluation of the model 
performance. In Section 6 we discuss the findings and implications, and 
present the limitations together with suggestions for future work and 
application. 

2. The VTT model 

The VTT model was developed using surface readings of RH and 
temperature on wood in a controlled laboratory chamber [54,55]. The 
model calculates a mould index, on a scale of 0–6, that represents 
different levels of growth from no growth to visually detected coverage 
of 100%. It is described by the equations [31,32]: 

RHcrit =

{
− 0.0026T3 + 0.160T2 − 3.13 + 100.0 whenT(t) ≤ 20
RH>20 whenT(t) > 20 (1)  

when RH(t) ≥ RHcrit(t)
dM
dt

=
k1k2

7e(− pT ln(T)− pRH ln(RH)+0.14W− 0.33SQ+pC )

(2)  

when RH(t) < RHcrit(t)

dM
dt

= Cdecline

⎧
⎪⎪⎨

⎪⎪⎩

− 0.032

0

− 0.016

when t − t1 ≤ 6h, or for nonwood surface

when 6h < t − t1 ≤ 24h

when t − t1 > 24h

(3)  

k1 =

{
k11 when M < 1
k12 when M ≥ 1 (4) 

T. Menneer et al.                                                                                                                                                                                                                                



Building and Environment 208 (2022) 108583

3

k2 =max
[
1 − e2.3(M− Mmax), 0

]
(5)  

Mmax =A + B
RHcrit − RH
RHcrit − 100

− C
(

RHcrit − RH
RHcrit − 100

)2

(6)  

where dM
dt determines the rate of change of the mould index, M = M(t), at 

each time-point t, per 24 h, T = T(t) is the temperature at time t, RH =

RH(t) is the relative humidity at time t, RH>20 is a constant of 80% or 
85% depending on the sensitivity level (see Table 1), pT = 0.68, pRH =

13.9, pC = 66.02, W and SQ are additional design parameters repre-
senting the wood type (0 = pine or 1 = spruce) and the wood surface 
quality (0 = sawn surface, 1 = kiln dried quality), Cdecline is a constant to 
adjust the rate of decline for M when RH is below the critical level, k1 

and k2 moderate dM
dt depending on M and the maximum mould level, 

Mmax, with their parameters k11, k12 and A, B and C determined by the 
sensitivity level (Table 1).1 

The direction of change depends on the current RH, at time t, RH(t). 
If RH(t) is equal to or greater than the critical RH value, RHcrit(t), then dM

dt 

is positive, otherwise dM
dt is zero or negative. 

The critical relative humidity at time t, RHcrit = RHcrit(t), is deter-
mined by Equation (1). When the temperature is above 20 ◦C, RHcrit is 

the default constant of RH>20. At or below 20 ◦C, RHcrit is a function of 
temperature. The resulting RHcrit function is shown in Fig. 1. Fig. 2 
shows RHcrit varying over time for a home with the displayed tempera-
ture and RH levels. 

When RH(t) ≥ RHcrit(t), dM
dt is positive, and is dependent on the 

current RH, the current temperature, wood-type and surface quality, as 
determined by Equation (2). The values in this equation are from the 
original VTT model [31], and represents the change in M across 24 h. 
The values were determined from regression equations predicting the 
time for mould growth to develop and to become visible under different 
RH levels and temperatures [54,55]. 

When RH(t) < RHcrit(t), dM
dt is zero or negative, according to Equa-

tion (3), although the process of decline is dependent on the type of 
surface. For wood surfaces, and in the original VTT model, the decline 
rate depends on the length of time for which RH < RHcrit. If RH < RHcrit 
holds for up to 6 h then M declines at the default rate, between 6 and 24 
h there is no decline, and for more than 24 h M declines at half the 
default rate. These timespans were determined in laboratory-based ex-
periments [55] in order to account for a delay in mould growth after a 
period of unfavourable conditions [56]. For non-wood surfaces, M de-
clines at a constant rate [32], which is set to the first setting for wood 
surfaces for the current study (− 0.032 per 24 h). The rate of decline is 
multiplied by a constant, Cdecline, that represents the intensity of the 
decline on different materials, and ranges from 0.1 to 1 [32,57,58]. 

The model also includes a sensitivity parameter, which can be set to 
one of four levels from ‘resistant to mould growth’ to ‘very sensitive’ 
[Viitanen, Ojanen, et al., 2011, as cited in Refs. [32,59]]. Increased 
sensitivity results in a greater increase in M when RH ≥ RHcrit. Each level 
comprises six values, provided in Table 1. One value provides RHcrit for 
each sensitivity level. The remaining five values moderate dM

dt in two 
ways when RH ≥ RHcrit. k1 scales dM

dt by k11 or k12, depending on the 
current level of M (Equation (4)). k2 moderates dM

dt according to the 
current value of M relative to the maximum level of M, Mmax, in order to 
prevent M exceeding Mmax (Equation (5)). Mmax is determined by 
Equation (6), using A, B and C values for the sensitivity level. 

Berger et al. [34] showed that the sensitivity parameters in the VTT 
model should be identifiable by minimising the error between observed 
and predicted mould indices given known RH and temperature levels. 
However, in aiming to identify the model sensitivity parameter values 
using empirical data from a new material (bamboo fibreboard), they 
concluded that the model parameter values need to be expanded to 
include a higher level of sensitivity for generalisation to new materials. 
They also revealed large differences in results in response to small 
changes in the constant term (i.e., pC = 66.02 in Equation (2)). They 
proposed a simplified model, in which the number of values required to 
prevent M exceeding the maximum is reduced, and the constant term in 
the model differential equation is removed. The adjusted model pro-
vided a better fit to the experimental data than the original VTT model. 
However, it was sensitive to the initial start value of M, and the authors 
note that further experimentation is required to establish an appropriate 
range of parameter values under different RH and temperature 
conditions. 

3. Data 

This novel study utilises a unique set of validated cross-sectional 
survey and time-series sensor data from over 300 homes recruited into 
the Smartline project [60–65]. The homes are owned and managed by 
Coastline Housing, a medium-sized not-for-profit housing association 
located in Cornwall, South West of England. Ethics approval was granted 
by the University of Exeter’s Research Ethics Committee. 

Surveys were conducted with 330 participants, face-to-face in their 
homes and included a range of topics such as resident behaviours, and 
health and wellbeing. For the current study, we used the self-report 
regarding the presence of mould and a mouldy odour in the home, 

Table 1 
Constants for each sensitivity level [32].  

Sensitivity level k1  k2 (Mmax)  RHcrit   

M < 1, k11  M ≥ 1, k12  A  B  C   

very sensitive 1 2 1 7 2 80 
sensitive 0.578 0.386 0.3 6 1 80 
medium resistant 0.072 0.097 0 5 1.5 85 
resistant 0.033 0.014 0 3 1 85  

Fig. 1. RHcrit as a function of temperature.  

1 In the original model [31], k12 is determined by 
2(

e(− 0.74 ln(T)− 12.72 ln(RH)+0.06W+61.50)

e(− pT ln(T)− pRH ln(RH)+0.14W− 0.33SQ+pC )

)

− 1

, which takes into account regression coefficients 

for growth when mould is at visible levels (M ≥ 3). However, in later versions 
of the model, k12 is simplified to 2 tM=1,pine − tM=3,pine

tM=1 − tM=3
, which takes into account dif-

ferences in time to reach different levels of mould for pine versus other mate-
rials [32], so is not applicable to the current study in which material is 
unknown. In other versions k12 is a constant [34], as in Table 1. 
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which has been used in prior studies in a social housing setting [10,66]. 
The survey questions were “Does your home have visible mould 
patches?” and “Has your home suffered from a mouldy/musty odour in 
last 12 months?”, each with response options of “Yes”, “No” or “Not 
answered”. 

Sensors in 280 Smartline homes, in the living room and main 
bedroom, provide objective measurements of ambient RH and temper-
ature, with a maximum frequency of every 3 min, from October 2017 to 
August 2022. Sensors were installed by the Blue Flame company [67], 
and were ISL 067 radio ultra-RF (reference: QC0160) manufactured by 
Invisible Systems Limited [68], with an accuracy of ±0.5 ◦C and ±0.7% 
RH. 

Fig. 2 presents the sensor data from the bedroom in one home. In the 
first set of models (using the first parameter space, P1, described below), 
the date range was limited to 21st August 2018 to 6th December 2018. 
This range was chosen in order to maximise the data we had available at 
the time of model implementation. For the second set of models (using 
P2), the date range was 1st March 2018 to 28th February 2019 to capture 
a full year. 

Given some variation in the time interval between measurements 
and some periods of missing data due to interruptions to sensor power, 
data were linearly interpolated to every minute. Mean average readings 
were then calculated over regular intervals of 5 min in order to capture 
the resolution and detail available in the data. Data at 5-min intervals 
require sensor and processing costs that are potentially beyond future 
practical real-time monitoring applications of the model. We therefore 
also included a resampling interval of 60 min to test whether the higher 

resolution is necessary or both intervals perform equally well. 

4. Methods 

4.1. Overview 

The problem can be framed as an inverse problem in which we wish 
to determine VTT model parameter values that map from the time-series 
RH and temperature sensor data to the observed survey response about 
mould or a mouldy odour. The process is summarised in Fig. 3. The input 
data are time-series RH and temperature sensor data and the observed 
data are the survey responses, taken at a single time-point. The error to 
be minimised is between the predicted presence of mould or mould 
odour and the observed responses. 

Outputs from the mould model comprise a time-series of mould 
indices, one for each time-point in the input data. The mean mould index 
was calculated to provide an overall single mould level for comparison 
with the binary observed response. The strength of the relationship 
between the overall mould level and the observed response was assessed 
with regression analysis. Measures of accuracy were assessed for 
parameter value sets that gave rise to a significant relationship. 

The following sections detail the mould model parameters and out-
puts, analyses, and measures of accuracy performance. 

4.2. Model parameter values 

Model parameters values were manipulated in two stages in order to 

Fig. 2. RH and temperature in the bedroom in one home from 1st March 2018 to 28th February 2019, with changes in RHcrit (top panel, grey line) when the temperature drops 
below 20 ◦C. For example, when the temperature drops to 10◦C on 1st February 2019, there is an increase in RHcrit . 
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search a feasible number of combinations at each stage. In the first 
parameter space, P1, we searched a wide grid of parameter values, and 
used the findings to inform finer-grained selected ranges for the second 
parameter space, P2. Values for P1 and P2 are presented in Table 2. In 

addition to capturing a reasonable range, values were chosen for reasons 
specific to the parameter, described in the subsections below. When 
using P2 we aimed to produce a stable mould level, with details provided 
below in Section 4.3, we therefore focussed on parameters that affect the 
model’s sensitivity to RH and the nature of the change in M and did not 
manipulate those parameters that could be considered growth rate 
moderators. 

As reasoned in the Introduction, we expected the VTT model with 
original parameter values to be less sensitive to air RH than to the sur-
face RH for which it was developed. Accordingly, we chose to manipu-
late parameters in such a way to increase the model’s sensitivity to RH 
levels, and encourage increases in M. 

4.2.1. Starting value for M 
In the absence of other information, the mould level within each 

home was assumed to be zero. 

4.2.2. Sensitivity 
A new sensitivity level was introduced that comprised values twice 

that of the values of the highest existing level in the original model, in 
line with previous research reviewed earlier [34]. Sensitivity levels 
therefore included ‘Very’ and ‘VeryX2’. 

4.2.3. Default RHcrit 
A range of values were used for the default RHcrit, which is 80% in the 

original model, from 40% to 80%. We chose these lower and upper 
limits to reflect the possible range of RH values within the cohort of 
homes measured. Equation (1) was adjusted such that the function 
dropped from 100% to the appropriate default RHcrit value, rather than 

Fig. 3. Steps for determining mould model parameter values that produce best performance for predicting mould and a mouldy odour from domestic air mea-
surements of RH and temperature data. 

Table 2 
Levels of each parameter for the model, providing 144 combinations of 
parameter values for P1 and 36 for P2.  

Parameter Parameter space  

P1 P2 

Starting value for M  0 0 
Resampling interval (minutes) 5 

60 
5 
60 

Sensitivity (Equations (4)–(6), and Table 1) Very 
VeryX2 

VeryX2 

Default RHcrit (%), RH>20 

(Equation 1 )
40 
60 
80 

40, 45, 50 
55, 60, 65 
70, 75, 80 

Coefficient for T, pT (Equation (2))  0.34 
0.68 
1.02 

0.34 

Coefficient for RH, pRH (Equation (2))  6.95 
13.9 
20.85 

6.95 

Constant, pC (Equation (2))  33.01 
66.02 
99.03 

33.01 

Decline method (Equation (3)) Wood (W) 
Non-wood (NW) 

Wood (W) 
Non-wood (NW) 

Cdecline (Equation (3))  0.1 
1.0 

0.1  
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to 80%. 

4.2.4. Coefficients for T and RH, and the constant 
From Equation (2), the values pT, pRH and pC were manipulated. 

(Values in the original publication of the VTT model were 0.68, 13.9 and 
66.02 respectively [31].) The values used were the original values, and 
original values plus and minus half of the original value to provide three 
levels for pT, pRH and pC. We chose these values to test the original values 
against a 50% change in each direction, which seemed sufficient to 
capture a wide range of values but not so extreme as to be departing 
from the original model. 

It is important to note that the three values were chosen to be of the 
same level (low, medium or high) within the same model. We therefore 
avoided very small or very large changes in M that can occur when the 
parameters are from different levels, as shown in Fig. 4, which are not 
particularly meaningful. Changes in M are a reasonable magnitude when 
the three parameters are at the same level (e.g., 0.0851 when low, and 
0.0006 when high). 

4.2.5. Decline method and Cdecline 
Cdecline ranges from 0.1 to 1 in the original VTT model. These ex-

tremes were used to capture the largest difference between values, with 
the aim of observing the largest effect of the manipulation. 

4.3. Mould index stabilisation 

For P1, the sensor data were presented to the model once. 
With P2, we used a full year of input data, which captures seasonal 

fluctuations and allows a representation of the internal conditions of the 
property to build up over time. We re-presented the RH and temperature 
sensor data to the model until convergence on a stable mould index (M) 
was achieved. Convergence was tested by comparing dM

dt values for the 

entire cycle with zero using a one-sample t-test. The model was termi-
nated when p > 0.05, or if convergence was not achieved by the 30th 
cycle. 

Convergence would be expected when RH fluctuates above and 
below RHcrit, causing increase and decline in M. Convergence is not 
driven by the input sensor data because they are the same in each cycle. 
Instead convergence is driven by the value of M. As M increases, k1 in-
creases when M ≥ 1, and k2 decreases as M approaches Mmax. The 
decrease in k2 allows M to stabilise rather than continuing to increase. 
However, there will be circumstances under which M will not reach 
stability, for example if the RH is always above RHcrit. 

4.4. Model outputs 

For each home, the RH and temperature time-series data were input 
to the model to calculate M(t) for each time-point, t, for the living room 
and the bedroom. In order to test the relationship between multiple M(t)
and the single observed survey response about the presence of mould or 
odour, we used the mean M(t) to capture a single overall mould level for 

the home across the date range, Mm =

∑
t
M(t)

N , where N is the number of 
time-points (t). For P2, the mean was calculated over the last cycle. Mm 
was calculated for each home and for each combination of parameter 
values. Each Mm was divided by the maximum value across all homes for 
each room and combination of parameter values, in order to use a full 
range of values and maximise the spread used in the analysis below. Mm 
values were also scales from 0 to 6 for consistency with the original VTT 
model. 

4.5. Analyses 

Logistic regression was used to test for a relationship between Mm 
and the observed response about mould or mouldy odour, with Mm as 
the predictor and the response as the outcome. Mm was a continuous 
variable (0–6), and the response was a binary variable with “No” coded 
as 0 and “Yes” as 1. 

A separate regression was conducted for Mm values calculated from 
living room and bedroom sensor data, for each survey question (obser-
vations of mould and of mouldy odour), and for each combination of 
parameter levels, resulting in 2 × 2 × 144 = 576 regressions for P1 and 
2 × 2 × 36 = 144 regressions for P2. 

Homes were excluded from the analyses if any survey responses 
relating to mould were missing (22 homes of the 330 that responded to 
the survey),2 or the sensor data did not span the entire date range in both 
the living room and the bedroom (up to 107 homes of the 280 with 
sensors installed). There were 213 homes included in each regression for 
P1, and 158 at most for P2, with a total of 2193 households across the 
two analyses. 

4.6. Prediction accuracy measures 

We will consider accuracy measures for parameter sets that produced 
a significant relationship (p < 0.05) in the regression between Mm and 
the observed response. For direct comparison with the observed data, 
the output from the regression was categorised as Y or N as follows. The 
regression equation was used to predict the probability of a Y response 
given Mm. The probability was categorised by a threshold. This 
threshold was determined by maximising the overall (i.e., balanced) 

Fig. 4. Simulated dM
dt using Equation (2) for different levels (low, medium, high) of 

pT, pRH and pC, with the other two values held at a constant level (low, medium, 
high). For example the fourth set of bars is labelled “low, other values medium” and 
the black bar represents dM

dt when pT is low and pRH and pC are at the medium level. 
Temperature is 20◦C and RH is 70% and is assumed to be above RHcrit . 

2 16 homes were excluded due to missing responses for mould and odour 
specifically, and 6 further homes were removed due to missing responses 
regarding heating or ventilation habits, mould or odour in specific rooms, 
mould size, or mould affecting health. These latter homes were excluded for 
consistency in anticipation of future model developments.  

3 At the time of analyses for P1 sensor data were missing from the system for 
6 homes that were recouped for P2 analyses. 
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accuracy for the model. 
We report the true positive rate and the true negative rate, which are 

combined to give the accuracy balanced across the number of Y and N 
survey responses. We also report the precision, which is the proportion 
of Y predictions that are true Ys. We use F1 to assess performance, which 
combines the true positive rate and the precision, thereby accounting for 
observed Ys that are missed as well as correct predicted Ys, to provide 
the overall accuracy of the Y predictions. Tables 3 and 4 present the 
formulae. 

Chance-level balanced accuracy is 0.5, given that the TPR and TNR 
are weighted by the number of Y and N observed responses. Chance level 
for F1 is not 0.5, because the numbers of Y and N observed responses 
differ. Chance-level values for F1 were therefore estimated by calcu-
lating the measures for the shuffled set of predicted probabilities, and 
selecting the Y/N threshold that maximised F1. This process was con-
ducted 200 times and the mean F1 was taken as the chance-level. The 
standard deviation of the 200 F1s was used to measure how far the F1 for 
the regression predictions fell from chance-level F1. 

It is worth noting that the chance-level F1 is based on a Y/N 
threshold to maximise F1, while the F1 reported for the model is based 
on the Y/N threshold that maximises balanced accuracy, to provide 
consistent Y/N predictions from the regression across all performance 
measures. 

5. Results 

5.1. Household characteristics 

Of the 330 Smartline households, 320 responded to each question 
“Does your home have visible mould patches?” and “Has your home 
suffered from a mouldy/musty odour in last 12 months?”, with 43.8% 
responding “Yes” for mould and 17.8% for odour. Of the 219 homes that 
were included in the analyses, and had therefore responded to both 
questions, 47.8% reported mould and 17.2% reported odour. 

These rates of mould and odour are higher than UK rates (23% and 
13% respectively). However, the Smartline rates are more similar to 
national rates when examining only homes rented from the local au-
thority or a housing association (32% and 22% respectively) [4]. 

Descriptive statistics for other survey responses are provided in 
Table 5. 5.2. Parameter space P1 

The p-values from the regression analyses provide a measure of the 
strength of the relationship between Mm and the observed response. The 

Table 3 
Different types of responses and the corresponding accuracy rates.    

Observed survey response    

Y N  

Regression prediction Y True positive (TP) False positive (FP) Precision =
Number of TPs

Number of Y regression responses  
N False negative (FN) True negative (TN)    

TP rate (TPR) =
Number of TPs

Number of Y survey responses  

TN rate (TNR) =
Number of TNs

Number of N survey responses    

Table 4 
Performance measures to assess the prediction accuracy of the regression.  

Performance measure Represents 

Regression p-value  The strength of the relationship between Mm and the 
occupant response.  

Balanced accuracy =
TPR + TNR

2  

Overall accuracy balanced across the number of Y 
and N survey responses. 

F1 = 2
(

Precision*TPR
Precision + TPR

)
The accuracy of model Y responses.  

Table 5 
Descriptive statistics for the survey responses and building characteristics for all 
homes and for homes that were included in the analyses. N provides the number 
of homes that responded or for which information was available.    

All homes that 
completed the 
survey (N = 330)  

Homes included 
in the analyses 
(N = 219)  

N Descriptive 
statistics 

N Descriptive 
statistics 

Survey responses 
Number of occupants 330 Mean: 2.1 

Range: 1-7 
219 Mean: 2.1 

Range: 1-7 
Ventilation: % rooms in 

which windows are 
opened, combined across 
responses to “Which of 
the following rooms do 
you regularly open 
windows (e.g. more than 
once per week) to 
ventilate your home?” 

329 75.0% 219 74.4% 

Ventilation: “Do you use 
the extractor fan when 
cooking?” 

322 Yes: 66.1% 215 Yes: 63.7% 

Ventilation: “Do you use 
the extractor fan when 
having a bath/shower?” 

324 Yes: 74.7% 216 Yes: 76.4% 

Ventilation: “Do you 
ventilate your home to 
minimise damp and 
mould?” 

324 Yes: 38.6% 216 Yes: 36.6% 

Ventilation: “Do you avoid 
ventilating your home to 
save heat/energy?” 

323 Yes: 19.5% 218 Yes: 19.7% 

“Do you think damp/ 
mould is impacting your 
or your family’s health?” 

324 Yes: 13.6% 219 Yes: 12.8% 

Coastline Housing records 
Building type 329 House or 

bungalow: 47.1% 
Flat: 52.9% 

219 House or 
bungalow: 
47.0% 
Flat: 53.0% 

SAP rating (Standard 
Assessment Procedure to 
assess energy and 
environmental 
performance) 

261 Mean: 73 
Median: 74 
Range: 26-88 

192 Mean: 73 
Median: 74 
Range: 26-86 

Roof insulation thickness 
(mm) 

280 Mean: 282 
Median: 300 
Range: 100-300 

200 Mean: 281 
Median: 300 
Range: 100-300 

Double-glazed windows 
fitted after 2002 

284 Yes: 53.5% 202 Yes: 47.5% 

Information from other sources 
Index of Multiple 

Deprivation [69] 
330 Mean: 4870 

Range: 606- 
19024 

219 Mean: 4712 
Range: 606- 
19024  
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p-values are provided in Fig. 5, split by different parameter values, by 
models based on sensor data from the living room (LR) and the bedroom 
(BR), and by survey responses about mould and odour. Prediction ac-
curacy is considered only for regression models that revealed Mm as a 
significant predictor of the observed response (p < 0.05). 

For the survey response about mould, models based on the living 
room sensor data provided the strongest predictors (all bedroom-data 
models p > 0.037). For the survey response about odour, 104 of the 
288 models gave p < 0.05. Only models based on bedroom data gave p <

0.01 (living room all p > 0.013). 18 models gave the lowest p-value 

(0.0001), with parameter values presented in Table 6. Table 7 provides 
the performance measures for the models that resulted in either smallest 
p, highest balanced accuracy, or highest F1 for each survey response. 

5.3. Evaluation of P1 and refining parameter values for P2 

Using the distributions of p-values (Fig. 5), the bedroom-odour re-
gressions with p = 0.0001 (Table 6), and the best-performing re-
gressions (Table 7), we can evaluate the differences between parameter 
values for each parameter in P1, as well as refine the parameter values 

Fig. 5. P1 regression p-values for the observed response about mould (left panels) and odour (right panels), for Mm modelled from the sensor data in the living room (LR) and 
the bedroom (BR), and for each parameter (panels A to F). The dashed line is at p = 0.05. 
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Fig. 5. (continued). 

Table 6 
Combinations of parameter values in P1 that produced regression models with p = 0.0001, indicated by “Yes”, using Mm from bedroom sensor data to predict the response about 
odour. W represents the Wood decline method and NW the Non-wood method. Only parameter levels that produced a model with p = 0.0001 are included. All are for 5-min and 
60-min resampling intervals except those marked with *, which are for 60-min only.   

Sensitivity: Very VeryX2 

Decline method: W NW W NW 

Cdecline:  0.1 1 0.1 1 0.1 1 0.1 1 

Default RHcrit  pT , pRH, pC          

40% 0.34, 6.95, 33.01     Yes Yes Yes Yes 
60% 0.34, 6.95, 33.01  Yes* Yes  Yes Yes Yes Yes*  
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for use in P2. 
The results for P1 provide little evidence for differences in perfor-

mance for resampling intervals of 5 min and 60 min, with similar dis-
tributions of p-values, few differences for highly significant bedroom- 
odour regressions, and identical performance for most best-performing 
regressions. The one difference is that the model using 5-min data pro-
vided the highest performance for the bedroom-odour regressions. 
However, the equivalent 60-min model also provided the lowest p-value 
and the second highest performance accuracy measures. Both resam-
pling intervals were retained for P2. 

Sensitivity is largely a growth rate parameter. Performance tends to 
be better for the VeryX2 sensitivity than Very, with slightly lower 
p-values, more bedroom-odour regressions with the lowest p-value, and 
more regressions with the highest performance. The only uniquely high 
performance for Very sensitive was from a regression with near chance- 
level F1. Only the VeryX2 sensitivity level was used for P2. 

Change in RHcrit has one of the most apparent effects on performance. 
Performance is higher when RHcrit is lower than 80%, but the evidence is 
split between 40% and 60%. In P2, we therefore included more grada-
tions in the set of RHcrit levels, and retained the 80% value from the 
original VTT model. 

Changes in pT, pRH and pC, also produced a notable effect. The me-
dium level produced one regression with high performance for balanced 
accuracy, but a near chance-level F1. Otherwise, the low level consis-
tently outperformed the medium and higher levels. Fig. 4 shows that the 
low level results in the largest change in M (Fig. 4: low = 0.0851, me-
dium = 0.0072, high = 0.0006). This result from P1 is in line with the 
earlier argument that model performance benefits from a propensity 
towards mould growth when using air measurements. For P2 we 
retained only the low level. 

The decline method showed some slightly lower distributions of 
p-values for Wood than Non-wood. Regression performance was similar 
for Wood and Non-wood, except Non-wood produced three more re-
gressions with best performance, although one gave near chance-level 
F1. There is therefore mixed evidence from P1 and both decline 
methods were retained for P2. 

For Cdecline, the evidence is again mixed, with higher performance 
from regressions using Cdecline of 1, but the distributions of p-values show 
a tendency for stronger relationships when Cdecline is 0.1 than 1. Like 
sensitivity, Cdecline can be considered a growth rate moderator, which is 
not the focus in P2 given that cycles are repeated to allow M to stabilise. 
We therefore decided to choose only one Cdecline level. Compared with 
the Very sensitivity level, the VeryX2 level causes a faster increase in M, 
and gave better performance for prediction in P1. Given a larger Cdecline 
would counter this increased rate, we chose to use the low Cdecline value 
of 0.1. 

5.4. Parameter space P2 

Numbers of models that did not converge after 30 cycles of the input 
data are given in Table 8. More models did not converge for lower 
default RHcrit values than higher, which is perhaps not surprising due to 
RH falling above RHcrit more frequently and therefore M continued to 
increase rather than stabilise. 

More models failed to converge for the data resampled with the 5- 
min interval than the 60-min, due to more dM

dt values providing greater 
power for the convergence t-test for the 5-min interval data. When 
power was equated by sampling every 12th dM

dt for the 5-min interval 
data, the numbers of models that failed to converge were similar across 
the two resampling intervals. Regression analyses conducted with this 
equated convergence criterion revealed parameters for the best perfor-
mance that are similar to those reported below, but some regressions no 
longer reached significance for prediction of the mould response, and 
performance measures were worse than those reported in almost all 
cases. Given increased performance, we therefore report the results for Ta
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the models that converged based on all dM
dt values in the cycle. 

Mm values from the models that did not converge were not included 
in the regression analysis. Given high numbers of models that failed to 
converge for the 5-min resampling interval combined with RHcrit of 40% 
and 45%, these parameter values were not considered when assessing 
performance. 

The regression p-values are provided in Fig. 6. As for P1, only 
regression models that revealed Mm as a significant predictor of the 
survey response (p < 0.05) were considered further in terms of exam-
ining prediction accuracy. 

For the mould response, Mm is a stronger predictor when the 
generated from the living room data (panel A, Fig. 6) than when 
generated from the bedroom data (panel B, Fig. 6). Both panels show the 
strongest relationships with the default RHcrit of 50% and a resampling 
interval of 5 min. For the living room, Mm is also a significant predictor 
when default RHcrit is 60%. 

For the odour response, Mm is a stronger predictor when generated 
from the bedroom data (panel D, Fig. 6) than when generated from the 
living room data (panel C, Fig. 6). For sensor data from the living room, 
panel C shows the strongest relationships occur when the default RHcrit is 
50% and 70% and when the resampling interval is 5 min. For the 
bedroom data, Mm is a significant predictor (p < 0.05) for default RHcrit 
values from 45% to 75%, with the strongest relationships (p = 0.003) 
occurring for 70%. 

Table 9 provides the performance measures for the models that 
resulted in either smallest p, highest balanced accuracy, or highest F1, 
for each survey response. 

5.5. Reliability of P2 parameter values 

To test the reliability of the parameter values revealed by the main 
P2 analyses (above), we repeated analyses using Mm calculated from M 
values in the last day only (28th February 2019) and from the final cycle 
of the RH and temperature input data. 

Table 10 provides the models that produced the lowest p-value, the 
highest balanced accuracy or highest F1. The parameter values for these 
models are the same as those for the main analysis of P2, except that one 
model produced the joint-lowest p-value in the main analyses, but pro-
duced the second-lowest value here. Balanced accuracy and F1 values 
were very similar to those from the main analysis. 

This analysis used a subset of data used in the main analyses. Future 
reliability testing is therefore recommended with new datasets, as dis-
cussed in Section 6. 

5.6. Evaluation of P2 

For P2, sensitivity, pRH, pT, pC and Cdecline were held constant (see 
Table 2). Results for the manipulated parameters are evaluated using the 
p-values (Fig. 6) and best performing regressions (Table 9), also 
considering the number of models that failed to converge on a stable 
value for M (Table 8). 

Despite resulting in more models that did not converge, a resampling 
interval of 5 min generally gave lower p-values and more best per-
forming regressions than 60 min. These results could suggest that dif-
ferences between 5-min and 60-min performance are, at least in part, 
due to more cycles being completed by the models using 5-min data than 
60-min (M = 10.1 and 6.2 cycles, respectively). However, in the re-
gressions conducted with the equated convergence criterion, as outlined 
earlier, the 5-min models still outperformed the 60-min models despite 
similar number of cycles (M = 6.1 and 6.2 cycles respectively). 

For the default RHcrit, 50% clearly provides most of the strongest 
relationships and the best prediction performance for both observed 
responses. 70% also provides the strongest relationship for the response 
about odour, but the equivalent regression with the 50% model also has 
a strong relationship and outperforms the 70% regression on every ac-
curacy measure. 

There is no consistent evidence for differences between Wood and 
Non-wood decline methods from p-values. However, Non-wood gave 
fewer models that did not converge and more best-performing models, 
with the only highlighted Wood model giving a chance-level F1. The 
decline process has been acknowledged to be a seemingly artificial 
method to account for the delay in mould growth after unfavourable 
conditions, rather the delay should ideally incorporate seasonal changes 
[46]. The practical effect of the Non-wood over the Wood method is a 
faster decline given the Non-wood rate is set to the fastest Wood rate. 
This effect is also in line with a future need to test a larger Cdecline. 

5.7. Results summary 

Our results show that the most accurate predictions about mould and 
a mouldy odour were made from mould levels, Mm, that were generated 
by a model that was conducted on data at 5-min intervals. Best perfor-
mance was achieved when the model was implemented using a sensi-
tivity higher than the highest sensitivity in the original VTT model, a 
default critical RH (RHcrit) of 50%, which is lower than the 80% in the 
original model, coefficients and constant in Equation (2) that promoted 
a greater change in the mould index, M, (low pRH, pT , pC), and a 
consistent decline rate (Non-wood), rather than one that varied based on 
the time spent below RHcrit (Wood). Further work is required to make a 
definitive decision about the rate of decline (Cdecline), but the lowest 
value available in the VTT model (0.1) did support successful prediction 
of survey responses. 

6. Discussion and conclusions 

The aim of this study was to expand an existing model of mould 
growth for generalisation to air readings of RH and temperature from a 
domestic setting, extending from the controlled laboratory readings on 
which the model was originally based. Despite the environment being 
less controlled than the VTT model’s original basis, the model can pre-
dict mould growth in this setting when the critical RH level is reduced 
from the 80% default value. 

Table 8 
The number of homes (out of 158) for which models did not converge for each combination of parameter values in P2, for the living room (first value) and the bedroom 
(second value). W represents the Wood decline method and NW the Non-wood method.  

Resampling interval Method of Default RHcrit (%)  

(minutes) decline 40 45 50 55 60 65 70 75 80 

5 W 107 
108 

61 
70 

20 
23 

4 
4 

1 
2 

0 
0 

1 
0 

3 
1 

0 
0  

NW 94 
95 

54 
61 

16 
19 

2 
2 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

60 W 14 
13 

1 
2 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0  

NW 13 
12 

1 
2 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0  

T. Menneer et al.                                                                                                                                                                                                                                



Building and Environment 208 (2022) 108583

12

Fig. 6. P2 regression p-values for the observed response about mould (panels A and B) and odour (panel C and D) for the living room (panels A and C) and the bedroom (panels 
B and D). Values are provided for each individual model, for each resampling interval (5 versus 60 min), decline method (Wood (W) versus Non-wood (NW)), and RHcrit 

default (40 to 80%). 
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More specifically, in order to predict mould and a mouldy odour 
from air measurements of RH and temperature, our findings suggest that 
parameters should promote vulnerability to mould growth, by 
increasing sensitivity, lowering the RH threshold at which mould grows, 
and increasing the change in M. However, there of course needs to 
remain an opportunity for M to decline, so the RH threshold cannot be so 
low that it is never reached. There is some indication that a faster decline 
rate could result in better performance, but more research on this pa-
rameter’s space is required. 

The need to increase the propensity for mould growth could be 
argued to arise from the starting value for M of zero. However, in P2 the 
repeated presentation of the RH and temperature data to the model al-
lows M to stabilise such that any bias in the starting value would be 
removed. 

Two possible reasons follow as to why increasing the model’s pro-
pensity to predict mould improves performance. Firstly, a lower critical 
RH level allows mould to be predicted even if RH in the air is lower than 
that on a surface. As reasoned in the introduction, 80% RH and above 
seems more likely to be sustainable on a surface than in the air in a 
domestic setting. Secondly, changes in RH can affect different mould 
species in different ways [7], so it may be that the reported mould in our 
participants’ homes was of a species that grows under reduced RH than 
typically required. 

Models using parameter space P2 were based on a full year of data 
and had the opportunity to converge on a stable M. The highest balanced 
accuracy and F1 were above chance level at 0.708 and 0.694 respec-
tively. However, there was some indication from P1 models that a higher 
balanced accuracy might be achieved by using a higher rate of decline. 

Precision is low for the models that predict the survey response about 
odour, with under half the predicted positives actually being a true 
positive. The threshold for the Y/N response was chosen to maximise the 
balanced accuracy (true positive and true negative rates, TPR and TNR), 

rather than the precision. Given 17.2% of survey responses included in 
the analyses were positive regarding a mouldy odour, the balanced ac-
curacy will increase more by correctly identifying a positive than a 
negative response, because the denominator for the TPR is smaller than 
for the TNR. The models are therefore liberal towards positive re-
sponses, as also reflected in the TPRs and TNRs, which results in reduced 
precision. 

Prediction of mould is more successful using sensor data from the 
living room than from the bedroom, while prediction of the mouldy 
odour is more successful using sensor data from the bedroom. This 
pattern is consistent with the idea that a mouldy odour is indicative of 
high levels of mould [70], given it correlates with mould contamination 
[12] and is a strong predictor of health impacts [9,23,66]. In the current 
study, the presence or not of a mouldy odour is predicted by air condi-
tions in the bedroom. It seems likely that the bedroom would have less 
air circulation than the living room, because movement of people would 
be higher in the living room, and the bedroom may contain larger pieces 
of furniture, such as the wardrobe and bed, which can prevent air 
circulating near the walls. Less air circulation would maintain 
mould-favourable or unfavourable conditions within the fabric of the 
room, thereby leading to high levels of mould contamination that pro-
duce the mouldy odour. Variances in the RH in the living room and 
bedroom do not support this explanation, with the mean of descriptive 
statistics over all homes being mean = 59.85%, SD = 7.18% for the 
living room and mean = 59.86%, SD = 8.18% for the bedroom, with a 
correlation of r = 0.81, p < 0.001. However, our survey responses about 
mould or odour in specific rooms confirm higher contamination rates in 
the bedroom (21.6% and 7.5%) than in the living room (11.0% and 
4.0%). 

The main implications for our findings are for future application to 
determine the minimum intervention required to control RH in order to 
reduce predicted mould levels. In moment-to-moment time-series data, 

Table 9 
P2 performance measures for significant (p < 0.05) regression models showing either smallest p, highest balanced accuracy, or highest F1 for the mould response and for the odour 
response, with the relevant metric underlined. W represents the Wood decline method and NW the Non-wood method.  

Survey 
response 

Sensor data 
room 

Resampling 
interval (minutes) 

Default 
RHcrit (%)  

Decline 
method 

p  TPR TNR Precision Balanced 
accuracy 

F1 Chance- 
level F1 
(SD) 

SDs above 
chance F1 

Mould Living 
room 

5 50 W 0.008 0.771 0.471 0.600 0.621 0.675 0.677 
(0.006) 

− 0.412 

5 50 NW 0.012 0.831 0.437 0.596 0.634 0.694 0.671 
(0.006) 

3.939 

Odour Bedroom 5 70 NW 0.003 0.714 0.608 0.282 0.661 0.404 0.322 
(0.019) 

4.354 

60 70 NW 0.003 0.714 0.623 0.290 0.669 0.412 0.321 
(0.021) 

4.407 

5 50 NW 0.010 0.769 0.646 0.333 0.708 0.465 0.337 
(0.021) 

6.113  

Table 10 
P2 for 28th February 2019 only. Performance measures for significant (p < 0.05) regression models showing either smallest p, highest balanced accuracy, or highest F1 for the 
mould response and for the odour response, with the relevant metric underlined. One model is also included that produced the joint-lowest p-value in the main analyses, but 
produced the second-lowest value here (row 3).  

Survey 
response 

Sensor data 
room 

Resampling 
interval (minutes) 

Default 
RHcrit (%)  

Decline 
method 

p  TPR TNR Precision Balanced 
accuracy 

F1 Chance- 
level F1 
(SD) 

SDs above 
chance F1 

Mould Living 
room 

5 50 W 0.007 0.786 0.471 0.604 0.628 0.683 0.678 
(0.006) 

0.849 

5 50 NW 0.012 0.831 0.437 0.596 0.634 0.694 0.672 
(0.007) 

3.319 

Odour Bedroom 5 70 NW 0.004 0.714 0.608 0.282 0.661 0.404 0.314 
(0.025) 

3.655 

60 70 NW 0.003 0.714 0.623 0.290 0.669 0.412 0.313 
(0.023) 

4.318 

5 50 NW 0.010 0.769 0.637 0.328 0.703 0.460 0.341 
(0.026) 

4.647  
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peak changes in the model’s mould index, M, can be identified, which 
would allow targeted reduction of RH at those points. Real-time pre-
dictions could enable smart control to provide the intervention neces-
sary to minimise mould growth and in turn reduce its impact on human 
health. Smart control could also avoid unintended consequences in 
homes with reduced ventilation rates and its impact on the indoor 
environment and health [e.g., some energy efficient homes: [66,71,72]]. 
Through such minimal intervention, human comfort could be main-
tained and unnecessary power expenditure avoided [e.g., Ref. [73]]. 
Smart control systems have the capability to consider a data-driven 
mould index and human comfort in parallel, hence the intervention is 
less likely to be countered by behaviours (e.g., a fan is switched off 
because it is cold or noisy at night, instead a smart control system would 
appreciate the occupants preferences) [e.g., Ref. [74]]. 

Smart monitoring by property owners could alleviate costs of repair 
associated with the presence of mould, and could be extended to 
monitoring for other damaging conditions such as cold or damp. Such 
tools would be useful to homeowners, but are likely to be more useful to 
housing providers who do not reside at the property, so that remote 

monitoring can be achieved. 
The main strength of this study is the large sample size for a study of 

this type. The multifaceted and large dataset has allowed for verification 
of the model’s predicted mould level, and exploration of parameter 
values that achieve useful levels of performance. 

More specifically, strengths of our study include the use of a co- 
designed resident survey, which adopted previous questionnaires on a 
social housing population [10,66], reporting both the presence of visible 
mould and a mouldy odour. The study benefited from the use of 
objective time-series measurements across 280 homes, which have been 
part of the Smartline project since 2017. 

However, there are a number of limitations to consider. These 
include the potential bias resulting from self-reported mould contami-
nation [14]. However, face-to-face questionnaires should result in less 
bias than remotely delivered questionnaires [12]. In addition, most 
studies find agreement between self-report of mould presence and the 
results of building inspections [75], particularly for the presence of a 
mould odour [70]. There may also be bias specifically for individuals 
suffering health issues that are associated with damp and mould, who 

Fig. 7. Mould index (black) and changes in the mould index (grey) from RH and temperature in the bedroom in one home from 1st March 2018 to 28th February 2019. RHcrit 

was 50%, using the Non-wood decline method, and data were at the 5-min resampling interval. The upper panel shows values from the first presentation of the RH and 
temperature data, and the lower panel shows the 9th presentation at which point the changes were not significantly different from zero. 
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may be more likely to respond to the mould-related questions, or to 
report mould or a mould odour [14]. 

Additionally, the Smartline cohort comprises an older adult popu-
lation, in a relatively deprived area of England, which could influence 
heating and ventilation behaviour. There is also a high proportion of 
flats, which have a higher optimal air exchange rate than detached 
houses [9,76]. However, these influences would be reflected in the RH 
and temperature data, which being time-series data, will account for 
fluctuations or changes in behaviour, for example in response to venti-
lation and heating costs. 

The use of a single observation regarding mould and mouldy odour is 
also a limiting factor, given that the model outputs comprise a time 
series of transient values of M, and therefore the relationship between 
the model outputs and the observed data could be inconsistent over 
time. We therefore used Mm to provide a single mean value to represent 
the model outputs. For P2, RH and temperature data were repeatedly 
presented to the model to allow a stabilisation of the mould index. Fig. 7 
presents the mould index for one home during the first and last cycles, 
and illustrates the stabilisation of the mould index. It could be argued 
that stabilisation dilutes the benefit of using dynamic mould index, but it 
does allow current and historic influences on the mould level to be 
captured and verified in this first study. In future work, using the dy-
namic model will allow influences (e.g., dehumidifiers) on the envi-
ronmental conditions to be considered, as discussed below. 

Previous criticisms of the VTT model include the robustness of the 
parameter values and sensitivity to small changes [34] (e.g., the values 
we avoided in Fig. 4). While we chose the VTT model in order to test a 
dynamic model of mould, an alternative is an isopleth approach, which 
provides a fixed reference for mould growth under the different sets of 
conditions [38,39]. Future work should develop isopleth curves for air 
measures using the current dataset in order to test performance against 
the survey responses and test the consistency of our findings. Bio-
hygrothermal models based on such isopleth systems would also account 
for effects of changeable conditions on mould spores, and would 
therefore be a useful development in future work. 

Future research should test the model’s outputs against self-report of 
the coverage of the mould, e.g., the size of the mould patches and the 
number of rooms affected. In relation to bias in self-report of mould 
[14], further work with the model may be useful in identifying reliable 
indictors in the self-reported measures, which could inform future sur-
vey content for identifying mould severity. 

Future work should also examine whether performance with 
different parameter values varies across different subsets of homes, 
including groups based on some of factors summarised in Table 5, such 
as energy ratings, property type, and ventilation habits. Reliability will 
also be tested with new datasets. 

Our UK-based dataset prevents testing the generalisability of the 
model to different climates, outside air conditions, different building 
constructions, and heating and ventilation systems. These factors affect 
the indoor conditions depending on thermal conductance of building 
materials and indoor-to-outdoor humidity ratios [8,43,51]. Useful con-
siderations for future research would be test the robustness of model 
using data that takes into account outdoor conditions, or on a different 
dataset, either from a commercial setting or a location with different 
climates. 

6.1. Conclusion 

The results provide evidence for relationships between the model 
outputs and the occupant responses, showing that the adapted model 
can be used for predicting mould growth from these less controlled air 
measurements, as opposed to surface wood measurements for which the 
model was originally developed. Mould levels modelled using relative 
humidity (RH) and temperature measures from the living room were 
successful at predicting the presence of mould in the home, while levels 
modelled using measures from the bedroom were successful in pre-

dicting the presence of a mouldy odour. Compared with the original VTT 
model, performance in predicting mould and odour from air measure-
ments was higher with parameter values that increase the vulnerability 
to mould growth, including increased sensitivity, a lower RH threshold, 
and a larger change in the mould index (M). This study supports the 
adoption of indoor sensors and modelling as a way to support housing 
associations to identify properties and residents at risk of being exposed 
to indoor damp and mould contamination. In doing so, this will help 
housing providers to reduce the cost in remediating homes with 
dampness-related and mould contaminated homes. 
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